US009252778B2

a2 United States Patent

(10) Patent No.: US 9,252,778 B2

Tahiri et al. (45) Date of Patent: Feb. 2, 2016
(54) ROBUST FLEXIBLE LOGIC UNIT (56) References Cited
(71) Applicant: Scaleo Chip, Valbonne, Sophia Antipolis U.S. PATENT DOCUMENTS
FR
(ER) 6,191,613 Bl 2/2001 Schultz et al.
. ; P . Pi 6,502,050 B1 12/2002 Chan
(72) Inventors: FDarlq Tahll‘l},(Le.Car(l;net (FI.{), Iljleére11 6675306 Bl 17004 Baxter
ominique Aavier {xaraccio, La Lolle 6,766,505 B1* 7/2004 Rangan GOGF 17/5054
sur loup (FR) 326/39
6,825,690 B1 11/2004 Kundu
(73) Assignee: Scaleo Chip, Valbonne, Sophia Antipolis 6,981,167 B2 12/2005 Johnson et al.
(FR) 7,049,846 Bl 5/2006 Kundu
7,159,204 B2 1/2007 Iotov et al.
(*) Notice: Subject. to any disclaimer,. the term of this ;:ggg:gg% E% gggg; Eﬁiﬁu
patent is extended or adjusted under 35 7,545,168 B2 6/2009 Kundu
U.S.C. 154(b) by O days. 2003/0128050 Al 7/2003 Schultz
(Continued)
(21) Appl. No.: 14/754,162
Primary Examiner — Don Le
(22) Filed: Jun. 29, 2015 (74) Attorney, Agent, or Firm — Blakely Sokoloft Taylor &
Zafman LLP
(65) Prior Publication Data
US 2015/0303926 A1~ Oct. 22, 2015 (57) ABSTRACT
Related U.S. Application Data A robust flexible logic unit (FLU) is targeted to be primarily,
. o o but not exclusively, used as an embedded field programmable
(63) glor(litmuatllon-m-pan of application No. 14/ 32}1341? S’ gate array (EFPGA). The unit is comprised of a plurality of
edon Tu . 1, 2,014’ now Pat. ,NO',9’077’339’ which 15 programmable building block tiles arranged in an array of
a continuation-in-part of application No. 14/153,760, : . .
columns and rows of tiles, and programmed tile by tile and
filed on Jan. 13, 2014, now Pat. No. 9,048,827. . f
column by column, using latches that are sequentially pro-
(60) Provisional application No. 62/000,156, filed on May grammed and locked using a lock bit that is part of the bit
19, 2014, provisional application No. 61/883,443, stream provided. A scheme of odd and even clocks prevent
filed on Sep. 27, 2013. latch transparency and ensures that loaded data is properly
locked, to prevent overwrites. The robust FLU is further
(51) Int.CL equipped with cyclic redundancy check capabilities to pro-
HO3K 19/177 (2006.01) vide indication of faulty column configuration. The invention
(52) US.CL also provides for splitting the single FLU into multiple inde-
CPC ... HO3K 19/17752 (2013.01); HO3K 19/17704 pendent reconfigurable FLU sections, with independent user
(2013.01); HO3K 19/17756 (2013.01) clock and reset, for implementing a plurality of independent
(58) Field of Classification Search functions or for establishing redundancy for critical func-

CPC ..ccovvvvvcrnne HO3K 19/17704; HO3K 19/17752
USPC vt 326/37-41, 93
See application file for complete search history.

tions.

19 Claims, 13 Drawing Sheets

100 cfg_lock

o

1101

I D A A]
~112N 4 1

=

m

- [cfg0[30:07 J=]

h12-1
[cfg1[30:0] J=

T

112-2f
[cfg2[30:0] Ji=

Configurable
FPGA Elements

112-3f
[<fa3130:01

1]

LI T O O T T T
=)

T

3 .
T6=2 1 /
e I R O R

110-1-1

AT

i_cfg_load [31:0]] }
120 cfg_load [30:0] \\120,30:0

US 9,252,778 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0212940 Al
2004/0153923 Al*

11/2003 Wong
8/2004 Goel ..o GOGF 11/1402

714/724
2005/0040850 Al

2005/0084076 Al

2/2005 Schultz et al.
4/2005 Dhir et al.

2005/0097432 Al*

2005/0121698 Al
2006/0006904 Al
2007/0247189 Al
2012/0213268 Al
2014/0111247 Al

* cited by examiner

5/2005

6/2005
1/2006
10/2007
82012
4/2014

Obuchi
Reynolds et al.
Marui

Phil et al.

Liuet al.

Hutton

HO3M 13/091
714/800

U.S. Patent Feb. 2, 2016 Sheet 1 of 13 US 9,252,778 B2

100\ cfg_lock
L 110-C-1
[200 D D T D D D A A | %
— 112~ 4 114 — - /\'“:u
|| cfgO[30:0] fs . i
~h1%-1t o |7
™ ([[cfg1130:0] |~ & £ |
" 11%-21 S| _
[cfg2[30:0] = € < Ho
- LS 3G |-
 [112-3% oa | ~—
_ [[cfa3130:0] = N
7 1
A] = ”
110-1-1 = 1 B g
 m—
110-1-R 1
i cfg load [31:0]] |
cfg_load [30:0] K120—300

120

FIG. 1

U.S. Patent

Feb. 2, 2016

200

Sheet 2 of 13

US 9,252,778 B2

230
A

0001110111010001001001001000101
1010000010110010111101001010011
0010100101011111001000111100111
0001001001110011101110001000011

1011000000111100000100100010100
1010111111110011010100011011101

}000010101010110110010000000001

g o i = X w W]

o o liw i w i Gy

1100101001111110000000001 100001
1000000110011000010101111100101
0111011010101001011011110001000
1101011000111001101001010011110
0101010101011000111001100100000

1101011011000011001110101000100
0110111101010110001101111111001
1010011110010011101010011000011
1101101010111011111110101010011
0001010111110010001011101011111
1011110101111000001101001110101
0110001101101111101101100011101
1100011011011100110101000000101

0001000101000110011000100001010
1111111111001101101111110011011
1110010010000111110111100101001
0100101101001110000111111000111

110-

FIG. 2

R

U.S. Patent Feb. 2, 2016 Sheet 3 of 13 US 9,252,778 B2

S(Q : | 330-c-r-1
9 4 9 4 oa ||l
q q q
¢ d —9 g —d d
330-c-r
332/
o 9 4 9
334~
e o} ¢,
338~ 336~
* g ((]j L S ?1 o9 ?1
q 3 3 330-c-r+1
? 9 d *19 d *19 d
310~
clk_even ® @) ——
clk odd *® R ! [pe—|
320~ i_cfg[30] i_cfgli] i cfg[0]

FIG. 3

U.S. Patent Feb. 2, 2016 Sheet 4 of 13 US 9,252,778 B2
i cfg lock o_cfg_load[30:0]
- A
330-¢-r-1
: I
— | >—|— |
¢ B latch_bank_0 |
k™Y I |
cb \ I__________“ _________ |
1 [4100 330-¢c-r
1] \
¢ 4—/ (I latch_bank 1 /
ol N £
410-1
~N
¢ d "‘I: latch_bank_2
c
Lch_ oo T
L] \
¢ d :I—J""— latch_bank_3
K - *—
cb \ T
410-3
~
¢ d LDl latch_bank_4
K _\\ *— -
[ﬁ"— 410-4
- L |
¢ d 4—/'”1‘— latch_bank_5 |
K |0— :
& | X
450 o_cfg lock ! I\
nrst 410-5 330-¢-i
/, clk_even i_cfg_load[30:0]
lk_odd
atp =2
320

FIG. 4

US 9,252,778 B2

Sheet 5 0of 13

Feb. 2, 2016

U.S. Patent

S.H :,H 2.H orﬁ mrH N.H w,H m.H NH mrﬁ N.H ﬁH o.H

| | | | | | | | | | | |

1 1 1 | | | | 1 1 | | |
-1 f1 Tt XiooTi i oti X 01 fi1 0 Y1 o1 X ¥0]
T YT 7 Y1 ~s. Yil~+*. Y1 o517 YT s« Y ¢ Y1 e
_ m m _ e

/:H on

_
6L-01¢

foom

R
]
|
_ AP
| 1-0-01¢
Ll LD blef e [ele) ble) [de] [Fx] s
el e bfe]| o] [d[e o] [rx] [x] ivuea e
_ el el [elle] [%] [o[x] [o[x] ig e yme!

b s 1

R 1 o 1 o 61 B 1 RCE o[x] [[x] [o[x] ierwuea yare
o [Ta] [Me] [e] o] [de] o x] [elx] [ofx] iuTweq uone;
Lo leLe Iile] | _m 1] e | | e | E X _ci _ _ 0 jueq y=ae|
1 I

/ 1L- oﬁmf °L-01¢

US 9,252,778 B2

Sheet 6 of 13

Feb. 2, 2016

U.S. Patent

9 "OId

) 2179 sTeubTts xoxxld -
Eﬁou% T T T T T 1%

sooys|soeus|oeus|acsus|osus|sicsus]osus|sosus | [Oo:TE]

k2 UMHU = UNHU ¥y D™EID|® UW#,UW UMHU k2 UMHU b2 UMHU = UmUA UMOH'OMO'I—H
0:0¢€-0CT 7 /UHNNQ > T T €T I ik ’ /_”O :0€] proT bIo D)
\ .\ A 1011~ 19 819 u\
D01 | s A A A NI o] \ i |/ |/ 01
/H B 20 sty T T ER
2 N . A i 1= ™ o¥MD O¥D
e qd-¥19
s
— 19
Tox3uod

oFO

A

Qh\H : v : “. _ : : sTeubTg I//

3ooTSS
_— 019
W S 119
e = —
k —
1-0-011 | T T T T T T T 1oeTeg PIOoM
16-021— sAooT B3 fos

U.S. Patent Feb. 2, 2016 Sheet 7 of 13 US 9,252,778 B2

700
START) F

5705

Initialize row counter

I

4 S710
Initialize word counter

[

S745
Increment row
A 4 8715 counter
Read configuration data 5750
for current row and word Complete CRC check

to CRC checker

Errors

More words? found?

S770

Send CRC error

Increment word counter

Continue in
CRC mode?

FIG. 7

U.S. Patent

620

\

Feb. 2, 2016

/812

Sheet 8 of 13

/ 800

618

\

US 9,252,778 B2

612

|

803
{ 804

SN—]

> CRC
Computin
622_// puting
813——
CRC
/ > Expected
801 —

811 —

CRC

Comparator

clk
n
Flip

=

DFIOpQ \ -

U.S. Patent

CRC CLK

CRC CHK

CRC EXPECT

CRC COMPUTE

CRC COMP

ERROR SIG

CRC STATUS

612

618

802

803

804

624

816

Feb. 2, 2016 Sheet 9 of 13

1L
—

L -

US 9,252,778 B2

OXXXXXX

OxCAFE

OxXXX

DRECAFDS

FIG. 9

U.S. Patent

FLU-Clk

1008

100
\ MEMORY

Feb. 2, 2016 Sheet 10 of 13

US 9,252,778 B2

FLU-NReset

1001 _t _t
- . e o e ¥
I
I :
1007 | |
. |
AHB/APB *
| I
i I
i I
i I
a1 1 [1 1 | |
- -»>
\/ \
o

FIG. 10

005

1002

1009

U.S. Patent

FLU-1-Clk

1008-1

Feb. 2, 2016

1003-1\

1004-1 QORY
Y ——— N

1002-1 4| |
i
1001-1 |
!
! _
1007-
! -
|
AHB/APB |
!
I
|
!
I
!
!
g e e e e — = = = = === [—
| A >) 2 > v
1/0O 1/O
1009-1 / /
1006-1 1010 1006-2

FIG. 11

Sheet 11 of 13 US 9,252,778 B2
FLU-1-NReset FLU-2-Clk 1003-2 FLU-2-
NReset
1008-2
1005-1
MEMORY 1005-2
1004-

1009-2

U.S. Patent Feb. 2, 2016 Sheet 12 of 13 US 9,252,778 B2

1010 \ 1205
Split Sel (Column)
3
£ —_—
o 1206
o

1203 1204

FIG. 12

U.S. Patent Feb. 2, 2016

N

Sheet 13 of 13 US 9,252,778 B2

-

Split Col. No. 1302
Registers
:]
8-bits 2

(split-Col) //

1303

_/
//—— 1010

Split-Sel
1305
-1
1104 1105
1304
Clock / column —// Reset/ Column
Split-Mask
Clk Reset
mux mux
Clk-1 Clk-2 Reset-1 Reset-2
1104-1 R 1105-1
1104-2 1105-2

FIG. 13

US 9,252,778 B2

1
ROBUST FLEXIBLE LOGIC UNIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser. No. 14/321,458 filed Jul. 1, 2014, which
claims the benefit pursuant to 35 U.S.C. 119(e) of U.S. Pro-
visional Patent Application No. 62/000,156 filed May 19,
2014 and is a continuation-in-part of U.S. patent application
Ser. No. 14/153,760 filed Jan. 13, 2014, which claims the
benefit pursuant to 35 U.S.C. 119(e) of U.S. Provisional
Patent Application No. 61/883,443 filed Sep. 27, 2013, each
of which is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention generally relates to field programmable gate
arrays (FPGAs) and more particularly to the programming of
FPGAs, and even more particularly with programming of
embedded FPGAs (EFPGAs).

2. Prior Art

In today’s world the use of integrated circuits (ICs) is
ubiquitous, and they can be found in practically every device,
even in the regular household. A particular branch of ICs is
that of field programmable gate arrays (FPGAs) which are
designed to be configured in the field, using some kind of a
hardware description language (HDL). The language
describes the specific configuration of components of the
FPGA so that it is operated as desired by a user making use of
the IC. One of the main advantages of FPGAs is the ability to
perform partial or full reconfiguration of the device even
when it is already connected as part of a system, if such
capabilities are kept enabled for the device. In certain cases,
reconfiguration takes place as part of the normal operation of
the device as it may be necessary to perform different func-
tions at different times.

In some cases FPGAs have therein embedded components
such as microprocessors, and other peripheral devices to pro-
vide enhanced functionality. This integration leads to lower
costs and reduced failures of the system. In other cases, cer-
tain ICs integrate therein features of FPGAs, creating embed-
ded FPGAs (EFPGAs) to allow a certain degree of flexibility
to a user to customize a component in a way that fits specific
user design needs. Regardless of which FPGA is used, the
challenge of the FPGA is in its programming that is a com-
bination of a program and hardware support to allow the
FPGA to be configured as desired. Such programming sup-
port in the prior art has a significant overhead associated
thereto, which is a problem, especially in the case of EFPGAs
where the overhead may become prohibitive for implemen-
tation or being cost effective. Implementations typically use
D-type flip flops (DFFs) which require word lines and bit
lines for a sequential approach, as well as row and column
decoders.

Therefore, in view of the deficiencies of the prior art it
would be advantageous to provide a solution for FPGAs in
general, and EFPGAs in particular, that would reduce the
overhead associated with the presence of programming sup-
port for the configurations of such FPGAs and EFPGAs.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other

10

15

20

25

30

35

40

45

50

55

60

65

2

objects, features and advantages of the invention will be
apparent from the following detailed description taken in
conjunction with the accompanying drawings.

FIG.1isablock diagram of atiled field programmable gate
array (FPGA) of a flexible logic unit (FLU) having a configu-
ration lock signal according to an embodiment.

FIG. 2 is an illustrative diagram of the programming of'the
tiled FPGA having a configuration lock signal according to an
embodiment.

FIG. 3 is a block diagram of latches of the tiled FPGA
clocked by two non-recovering clocks according to an
embodiment.

FIG. 4 is a block diagram of the locking mechanism of the
tiled FPGA clocked by two non-recovering clocks according
to an embodiment.

FIG. 5is anillustrative timing diagram of the programming
of'the tiled FPGA clocked by two non-recovering clocks and
having a configuration lock signal according to an embodi-
ment.

FIG. 6 is a block diagram of a tiled FPGA of a robust FLU
configured with an error detection circuitry according to an
embodiment.

FIG. 7 is a flowchart describing the checking process of a
column of tiles of a tiled FPGA of a robust FL.U configured
with an error detection/correction circuitry according to an
embodiment.

FIG. 8 is block diagram of the CRC check circuit associ-
ated with each column of the tiled FPGA shown in FIG. 6.

FIG. 9 is a typical timing diagram of the CRC checker
shown in FIG. 8.

FIG. 10 is a block diagram for an exemplary implementa-
tion of a single EFPGA (FLU).

FIG. 11 is a block diagram for the splitting of the single
FLU into multiple FLU sections.

FIG. 12 is a block diagram for a circuit that enables hori-
zontal connections between adjacent blocks within the FLLU.

FIG. 13 is a block diagram for a circuit that separates the
clock and Reset for each block and provides independent
inputs to each of the FLU sections after the split.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

It is important to note that the embodiments disclosed by
the invention are only examples of the many advantageous
uses of the innovative teachings herein. In general, statements
made in the specification of the present application do not
necessarily limit any of the various claims. Moreover, some
statements may apply to some inventive features but not to
others. In general, unless otherwise indicated, singular ele-
ments may be in plural and vice versa with no loss of gener-
ality. In the drawings, like numerals refer to like parts through
several views.

A flexible logic unit (FLU) is targeted to be primarily, but
not exclusively, used as an embedded field programmable
gate array (EFPGA). The unit is comprised of a plurality of
programmable building block tiles comprising configurable
logic (e.g., 114 in FIG. 1) arranged in an array of columns and
rows of tiles, and programmed by downloading configuration
data, done tile by tile and column by column, using latches
organized in latch banks (e.g., 112 in FIG. 1) that are sequen-
tially programmed, each from the immediately previous
latch. The latches are locked from being further written to
using a lock bit, for example in the form of a flip flop (FF) as
part of the configuration words provided. A scheme of odd
and even clocks prevent latch transparency racing conditions

US 9,252,778 B2

3

and ensures that once configuration data has arrived at its
destination it is properly locked, not to be unintentionally
overwritten.

Therefore, according to the principles of the invention a
FPGA is partitioned to multiple tiles, which may or may not
be identical, containing elements that may be programmed
with a configuration word. Instead of D-type flip flops
(DFFs), i.e., devices that propagate an input D to its output Q
on the edge of the clock, latches are organized in latch banks,
where a latch propagates its input D to its output Q when the
clock is, for example, at a logical high. This configuration
allows for the relaxation of the clock skew constraints typi-
cally associated with the use of DFFs, and further provides for
a smaller area of the latch in comparison to a DFF. However,
the nature of a latch requires the use of a non-overlapping
clock to avoid races, as well as a lock mechanism to ensure
that once data has arrived at a latch, it remains there until the
latch is unlocked. A latch bank may contain one or more
latches. The use of latches further eliminates the need,
according to an embodiment, for word lines and bit lines for
the sequential approach and further eliminates the need for
row and column decoders.

Reference is now made to FIG. 1 that shows an exemplary
and non-limiting block diagram 100 of a tiled field program-
mable gate array (FPGA) 110 of a flexible logic unit (FLU)
having a configuration lock signal 120-31 according to an
embodiment. Each tile 110-c-r of the tiled FPGA 110, where
‘¢’ is an integer having values from 1 to C and where ‘r’ is an
integer having values from 1 to R, comprises one or more
latch banks, for example latch banks 112-1 through 112-4, of
latch bank element 112 as shown in the enlargement of tile
110-1-1. A latch bank may contain one or more latches,
however the number of latches in a latch bank of any one of
the latch bank elements 112 in a column has to be identical,
i.e., 31 latches in latch bank 112-1 requires that all other
latches in element 112 of 110-1-1 as well as any of the latch
bank elements 112 of that particular column have the same
number of latches in each latch bank. Control interface 120
receives, for example, a configuration word of 32 bits, of
which 31 bits 120-30-0 are used to provide configuration data
to the latches and one bit as a locking bit. As can be seen, the
locking bits flow within a column ‘¢’ in an opposite direction
to that of the configuration data of the same column, accord-
ing to an embodiment. Specifically, according to an embodi-
ment, the tiles, each containing configurable FPGA elements
114 of the partitioned FPGA, are programmed within a col-
umn, tile by tile, and only once one column has been com-
pletely programmed, another column may be programmed.
This simplifies the requirements on the programming over-
head circuitry. It should be further noted that each column of
tiles is programmed independently of any other column of
tiles, that is, only the selected column for programming is
programmed. Moreover, if a single latch bank is to be repro-
grammed, it is necessary to program the entire column of
latch banks of the column of tiles as no random access to any
latch bank is provided according to the embodiments.

FIG. 2 depicts an exemplary and non-limiting illustrative
diagram 200 of the programming of the tiled FPGA 110
having a configuration lock signal according to an embodi-
ment. The configuration data, shown on the left, may be
stored, for example, in a memory, and is contained, merely for
example purposes, in a 32-bit configuration word comprising
31 bits of configuration data and one lock bit. As noted with
respect of FIG. 1, one column of bits, 220, is used for the lock
signal purposes while the other bits 230 of the configuration
word are used as configuration data to load a latch of a tile in
a sequential order. Hence, configuration words 240-1-1 are

25

35

40

45

50

55

4

used for the programming purposes of tile 110-1-1 (the first
‘~1” designating the column the tile is in and the second ‘-1’
designating the row the tile is in); configuration words 240-
1-r are used for the programming purposes of tile 110-1-r;
configuration words 240-1-r+1 are used for the programming
purposes of tile 110-1-r+1; configuration words 240-1-R is
used for the programming purposes of tile 110-1-R, i.e., the
last tile of the first column; configuration words 240-2-1 is
used for the programming purposes of tile 110-2-1, i.e., the
first tile of the second column; and, configuration words 240-
C-R is used for the programming purposes of tile 110-C-R,
i.e., the last tile of the last column. Furthermore, the flow of
the lock bits 220 is opposite to that of the configuration words
240. It should be noted that the values of a lock bit in a
particular configuration word is independent of the content of
the particular configuration word and does not correspond
thereto. It should be further noted that though the example
shows that each tile has four latch banks in a tile, this should
not be viewed as limiting on the invention. Each latch bank
element 112 of a tile may have one or more latch banks
therein, independent of the number of latch banks in any other
tile of the column, as long as the number of latches in each of
the latch banks is the same within a column of tiles. It should
be noted that the lock bit needs to be changed from 0’ to ‘1°
when configuration data destined for the latch bank at the top
of the column reaches its destination. From there on the lock
bit data remains at a value of “1” until all configuration data is
locked in its respective latch bank. Furthermore, as the clocks
continue clocking the lock bits continue down the column
until the final lock bit is set to “1” corresponding to the time
where the last configuration data of the column is loaded into
the respective latch bank.

In order to prevent the phenomenon of latch transparency
(also known as a race condition) a scheme of two non-recov-
ering clocks are used. FIG. 3 describes an exemplary and
non-limiting diagram 300 of latches of the tiled FPGA
clocked by two non-recovering clocks 310, 320 according to
an embodiment. Non-recovering clocks are two or more
clocks where there at no times there is more than one clock
which is in its active state. Such clocks are also known as
non-overlapping clocks. The clocks are designed such that
data moves from one latch bank, comprising one of more
latches, to an immediately subsequent latch, for example
from the output of latch bank 334 into latch bank 332 respon-
sive to clock signal clk_odd 320. Latch bank 334 gets updated
with data responsive to clock signal clk_even 310. The clocks
clk_even 310 and clk_odd 320 being non-recovering clocks
ensure that data does not race through the plurality of latch
banks of column ‘¢’ impacted solely by the delay character-
istics of the latches. It should be understood that the latch
bank elements, for example latch bank element 330-c-r, con-
tains configuration data for its respective configurable FPGA
elements 114 of the respective tile, for example, the tile in
column ‘¢’ and row ‘r’. Overall, the operation is such that the
writing into the sequence of latch banks that is done by
moving data in one direction (as shown upwards) in the col-
umn. It should be noted that though four latch banks are
shown, any number of latch banks may be used with respect
of each tile as long as a subsequent latch bank receives a
different clock, e.g. clk_odd 320, if the immediately previous
latch bank received the other clock, e.g., clk_even 310. When
connecting tiles within a column of'tiles, which also requires
connecting of the last latch bank of a previous tile to the first
latch bank of a current tile, the same requirement exists, i.e.,
if the latch bank of the pervious tile received one clock, for
example, clk_even 310, then the first latch bank of the current
tile must be connected to the other clock, for example,

US 9,252,778 B2

5

clk_odd 320, and vice versa. This will ensure proper opera-
tion within the column. Moreover, according to an embodi-
ment, it is not necessary that each column has the same
number of latch banks and it is possible that each column will
hold a different number of latch banks, or for that matter, have
the same number of latch banks, but distributed in any desired
way between the tiles of the column, for as long as each tile
has at least one such latch bank.

FIG. 4 depicts an exemplary and non-limiting block dia-
gram 400 of the locking mechanism for a single column of
tiles of the tiled FPGA clocked by two non-recovering clocks,
clk_even 440 and clk_odd 430, according to an embodiment.
In the exemplary case a column of six latch banks 420-0
through 420-5 is shown. In this exemplary case, latch_bank_0
is part of latch bank element 330-c-r-1, latch_bank_1 through
latch_bank 4 are part of latch bank element 330-c-r, and
latch_bank_5 is part of latch bank element 330-c-r+1, where
each such latch bank element 330 used for the configuration
of FPG elements 114 of a corresponding tile in a column. The
latch banks are so connected that data from one latch bank is
provided to the immediately following latch bank such that
the content of each of the latches of one latch bank are trans-
ferred to the immediately preceding corresponding latches of
the preceding latch bank using the clocking scheme of the
non-recovering clocks. For each latch bank of latch_bank_0
through latch_bank_5 there is a corresponding DFF 410, for
example DFF 410-0 for latch_bank_0. The DFFs 410 are
used to transfer the lock bit corresponding to each latch bank,
that enables or disables, as the case may be, the latching
capability of data into a corresponding latch bank. While the
configuration data is fed in one direction of the column, in the
case shown data flows from, for example, latch_bank_1 to
latch_bank_0, the lock bits move in an opposite direction, in
the case shown from DFF 410-0 to DFF 410-1. This ensures
proper locking of the data in the latch banks and avoids the
need of word and row lines in the implementation, thereby
saving on decoding circuitry. It should be further understood
that the lock bits have to be reset (i.e., receive a value of ‘0°)
to initialize the circuit, using reset signal 450, as they have to
begin at a known value that leaves the latch banks unlocked as
a starting point.

Reference is now made to FIG. 5 where an exemplary and
non-limiting illustrative timing diagram 500 depicting the
programming of a portion of a column of a tiled FPGA
clocked by two non-recovering clocks and having a configu-
ration lock signal according to an embodiment. According to
this example it is necessary to load the latch bank elements
310, having a latch element 310-c-r containing four latch
banks latch_bank 1 through latch_bank 4, where
latch_bank_4 receives configuration data from latch_bank_5
of a previous latch bank element, and where latch_bank_1
provides data to latch_bank_0 of an immediately subsequent
latch bank element. In this way an even numbered latch bank
overrides the content of the subsequent odd numbered latch
bank and an odd numbered latch bank overrides the content of
an even numbered latch bank. This process continues until
such time that a latch bank is locked by setting its lock
flip-flop to ‘1’ thereby preventing any future override by
content from a previous latch bank, and as further explained
herein. The data loaded, in this example, is designated for
simplicity by ‘a’, ‘b’. .. ‘f’ respectively, which represents, for
example, the 31 bits of data previously discussed. Hence the
timing diagram 500 illustrates the content of'a column of latch
banks and lock bits at different points in time. The values
shown as ‘x’ stand for either meaningful data that has not yet

15

20

25

40

45

6

reached its designated latch bank or don’t care values of latch
banks that are going to be overwritten by valid data, as the
case may be.

Accordingly at T, the value ‘a’ is provided at the input end
of the configuration data with a ‘0’ lock value at the lock bit
input. At T, the value ‘a’ is latched into latch_bank_5. At T,
the value at the data input changes to ‘b’, and the lock bit value
provided is ‘0°, while the value ‘a’ provided from
latch_bank_5 is latched into latch_bank_4.In T, the value ‘b’
is latched into latch_bank_5 and the value ‘a’ is latched into
latch_bank_3. This continues until at Ty the data value is
changed to ‘d” and lock bit supplied is ‘1 as it is time to lock
the latch_bank_0 with the value ‘a’, which subsequently hap-
pens at T,. Thereafter, data from a previous latch bank, in this
case data from latch_bank 1, does not get latched into the
latch of latch_bank_0, as it is now locked. Eventually, all data
gets locked at its respective latch bank. In the diagram 500,
bold cells depicted cell having locked values therein. For
further non-limiting illustration one may consider the lock bit
providing a value ‘1’ at T, to the column, i.e., position 510-T,
where the lock bit of latch_bank_0 becomes ‘1°, thereby
locking configuration word(s) ‘a’ in that latch bank, while
adding configuration word(s) ‘e’ into latch_bank_5. Simi-
larly, at the lock bit providing a value ‘1’ at T, to a subsequent
column, i.e., position 510-T,, where the lock bit of
latch_bank_0 is also ‘1’ being pushed down the column,
thereby locking configuration word(s) ‘c’ in latch_bank_2,
while maintaining the latch_bank_0 and latch_bank_1 locked
with their respective data ‘a’ and ‘b’. From the other side, i.e.,
at the bottom of the column, adding configuration word(s) ‘e’
into latch_bank_5. While moving configuration word(s) ‘d’
further up the column. Hence, the flow of the lock bit data
down the lock bit column successively locks the correct con-
figuration data in each respective latch bank. In order to
function properly, the lock bit value has to be set to “1” in the
sequence of configuration words when the configuration data
for the top latch bank is reached, and thereafter remain set at
‘1’ until the entire column of latch banks is properly locked.

In one embodiment a robust FLU embeds therein an error
detection circuitry. The main objective of the addition of this
error detection circuitry is to catch FLLU configuration issues,
e.g., configuration errors versus expected configuration of the
FLU. This is used to increase FLU robustness by executing
the checks continuously once the FLLU exits its programming
mode. Thereafter, various failures modes, including but not
limited to silicon failures due to aging, are caught and sig-
naled, allowing for timely correction, for example, and with-
out limitation, by reentering programming mode of the FL.U,
of'the FLU operation.

FIG. 6 depicts an exemplary and non-limiting block dia-
gram 600 of atiled FPGA ofarobust FL.U configured with an
error detection circuitry according to an embodiment. The
basic structure of the matrix 110 has been described at least
with respect of FIG. 1, as well as thereafter, and therefore is
not repeated here. Circuitry has been added to the circuit
described in FIG. 1 and this additional circuit is explained
herein. Specifically, cyclic redundancy check (CRC) circuitry
620 is added to allow the checking of the configuration data
loaded into the configuration latches, also referred to herein
as configuration words. One of ordinary skill in the art would
readily appreciate the loading incorrect data in a configura-
tion words, or, having a configuration word change sponta-
neously one or more of its configuration bits, can result in
unpredictable operation of the tiled FPGA and hence should
be avoided or otherwise be repairable. Therefore, a detection
mechanism is added and a check is performed to ensure the
configuration data is correct. According to an embodiment of

US 9,252,778 B2

7

the invention this is done while the FLU is in operation mode,
i.e., after completion of its programming and exiting pro-
gramming mode, and until exiting the operation mode and
reentering the programming mode. To allow for such check-
ing, a CRC control 610 is added to the tiled FPGA and is
operative throughout when the FLU is in the operation mode,
during which it provides a series of signals that control the
detection operation of the FLU, and as further explained
herein. The checking process cannot be activated when the
FLU is in a programming state. Once programming is done,
the CRC is executed in loop as soon as the FLU configuration
is loaded and while the device is powered on. In addition,
CRC and Check circuits 620, in one embodiment one per
column of the matrix 110, are also added to the tiled FPGA.
Within each tile 110-c-r, where ‘c’ and ‘r’ are integers starting
with ‘1” and reaching C and R final integer values respec-
tively, for example tile 110-1-R, a path from each of the
configuration latches therein connects to a column data bus
622. For example, column 1 connects to data bus 622-1 while
column C connects to data bus 622-C. Each of the data busses
622 connects to a corresponding CRC and Check circuit
620-1 through 620-C.

To control the operation of the CRC, the CRC control 610
generates a CRC clock 612 to the CRC and Check circuits
620. The CRC clock 612 causes the computation of a new
CRC on, for example, each post-edge of the CRC clock 612.
In addition it provides row select signals 614, enabling one
row of tiles at a time, from row select signals 614-1 through
row select signals 614-R. It should be noted that for the
purpose of accessing a plurality of configuration words in a
particular tile, the word select signals 616 allow the access to
each and every configuration latch within a particular tile
selected by the respective row signal 614. The CRC and
Check circuit 620-c allows calculating CRC in parallel on
each configuration latch of all columns. Hence it is therefore
possible to select a particular configuration latch by row and
cause that content therein to be provided to the corresponding
column data bus 622. For example, when a row select signal
614-1 is activated than a configuration latch of tile 110-C-1,
corresponding to the appropriate word select 616 signal will
be provided to the CRC and Check circuit 620-C. By serially
moving from one configuration latch to the other, the content
of each of the configuration latches is provided to its respec-
tive CRC and Check circuit 620 and a CRC can be performed
respective of the data provided.

Once the entire CRC of columns is completed, a check is
done by comparison with the expected CRC loaded during
configuration into the CRC and Check circuits 620 on a per
column basis; it is then possible to check error signals 624,
one error signal 624 per column, provided from each of the
CRC and Check circuits 620, each error signal having a first
state indicating that no error has been detected and a second
state indicating that an error has been detected. If an error
signal 624, for example 624-C, indicates an error state then
that particular column has to be reconfigured in a manner
described in more details herein. The CRC check signal 618
is activated upon the completion of the CRC computation,
i.e., once all the tiles 110-c-r have been checked, to cause the
comparison between the expected CRC and the computed
CRC. One or more error signals 624 may be then generated to
signal if an error has occurred. The control is operative such
that columns of tiles are operated on in parallel, having sepa-
rate word selections for the words in each tile of each column.

FIG. 8 depicts an exemplary and non-limiting block dia-
gram 800 of the CRC and Check circuit 620 associated with
each column shown in FIG. 6, and FIG. 9 is a typical timing
diagram of the CRC checker 620. The row select signal 614

10

15

20

25

30

35

40

45

50

55

60

65

8

activates each row as described earlier and the word select
signal 611 enables each of the configuration latches of the
selected tiles to be cycled through to enable checking of the
complete FLLU configuration as described previously. The
register 811 is an expected value register in the CRC checker
260. During configuration the expected CRC value of for each
column 110-1 to 110-C is loaded into the appropriate
expected value registers 811-1 to 811-C of CRC and Check
circuits 620-1 to 620-C respectively. The stored expected
value 801 is used as a check to compare against the generated
CRC value 803 from a CRC computation block 812 of FIG. 8.
The CRC computation block 812 computes the CRC value
803 based on the CRC data input received on the data bus 622
and at each CRC clock 612 edge. The CRC value is computed
for all the row of tiles 110-c-1 to 110-c-R in each column. The
CRC checker 260 hence calculates the CRC value of the
column of tiles 110-c-1 to 110-c-R for all columns of tiles
110-11t0 110-C. The computed CRC value 803 is fed to a CRC
comparator 813, that compares the computed CRC value 803
with the expected value 802 input, to produce an output that is
an indication of the correct or error value 804. This output is
fed to a first D Flip-Flop 814 clocked by the CRC clock and
having an enable that is the CRC check input 618. At the end
of'each column check a CRC check input enable the D-FF to
output an error signal 624 that indicates to the correctness of
the configuration of the column as described earlier. An addi-
tional implementation of the CRC checker 260 provides for a
monitoring of the activity of the error detection circuitry by
using the circuit in the block 810. The CRC clock is used as
clock to drive a second D-FF 815. The enable ‘en’ of the D-FF
is set to 1 and the D input is the output 804 of the CRC
comparator 813. The output 805 of the D-FF 815 is fed to a
first input of an XOR 816. The CRC comparator output 804 is
fed to the second input of the XOR 816. The output 804 of the
CRC comparator 813 is clocked out of the D-FF 815 and
applied to the second input of the XOR 816 so that it provides
result of the previous CRC check. The XOR 816 compares
continuously the results of the previous and current CRC
checks to make sure that the generated CRC value 803 and the
output 804 of the CRC comparator 813 change during the
checking process.

FIG. 7 describes an exemplary and non-limiting flowchart
700 describing the checking process of a column of'tiles of a
tiled FPGA of a robust FLU 600 configured with an error
detection/correction circuitry according to an embodiment.
The same operation takes place in parallel for each and every
column oftiles of the FLU. In S705 arow counter (not shown)
implemented as part of the CRC control 610, is initialized. In
S710 a word counter (not shown) implemented as part of the
CRC control 610, is initialized. In S715 the configuration data
is read from a configuration latch corresponding in position to
the current row and word counters’ values. In S720 it is
checked whether additional words are to be checked and if so,
execution continues with S730; otherwise, execution contin-
ues with $740. In S730 the word counter is incremented and
execution continues with S715. In S740 it is checked whether
more rows are to be read and if so execution continues with
S745 where the row counter is incremented, and thereafter,
execution continues with S710; otherwise, execution contin-
ues with S750. In S750 the CRC is completed and comparison
is done between the CRC calculated and the CRC expected.
In 8760 it is checked whether if at least an error is detected
and if so execution continues with S770; otherwise, execution
continues with S780. These error signals provide an indica-
tion that an error has occurred and preferably provide an
indication in which of the words such an error happened. In
8770 a CRC error signal is initiated. Such a generation of an

US 9,252,778 B2

9

error signal may separately initiate a sequence that results in
the FLLU going out of the operation mode and entering the
programming mode of the FLU, to allow for full or partial
reprogramming as the case may be. In S780 it is checked
whether to continue the checking and if so execution contin-
ues with S705; otherwise, execution terminates. The method
may make such a determination to terminate, for example, in
response of the FLLU entering the programming mode of the
FLU. One of ordinary skill in the art would readily realize that
the embodiment described in FIG. 7 is merely one possible
way of implementing the check and others are possible with-
out departing from the scope of the invention, including, for
example, running one process to perform the check and
another state machine or process to cause entry and exit from
one mode, for example operation mode, to another mode, for
example, programming mode.

In the above description of FIG. 7, it was stated that the
error signals provide an indication that an error has occurred
and preferably provide an indication in which of the words
such an error happened. The latter can be achieved in another
embodiment by calculating the CRC as each word is received
at the CRC and Check circuits 620 and comparing them to a
respective expected CRC for that word. In particular, CRC
data can be added to each configuration word to allow the
check of each individual configuration word by the CRC and
Check Circuits 620. Thus the error may be immediately
detected for any word in error, in which case the CRC check
may be stopped and the reloading of the column immediately
started, or the reloading only started after all configuration
words in that column have been processed. If the processing
of the entire column of configuration words is completed
before reloading is started, each configuration word in error
may be noted, so that if at least one error continues to occur,
one can separate hard error (repeatable as in a hardware fault
or bad configuration words to start with), or soft errors (non-
repeatable, as may be caused by noise or some other prob-
lem).

One of the problems faced when using EFPGAs to handle
security and similar critical features of the design is that when
anerror is identified by the CRC check, the whole EFPGA has
to be taken out of the circuit and fully or partially reconfigured
and reprogrammed to start from a known reference point.
This means that the critical feature is shutdown and remains
off till the EFPGA comes back on line. In some of these
critical cases this can take as much as 100,000 clock cycles or
a few milliseconds which in some applications become unac-
ceptable. In some of these cases where the EFPGA function-
ality is used for a larger function that includes some critical
elements, it is possible to separate out a critical functions and
non-critical functions within the designed functionality
implemented. By implementing a second block of the
EFPGA that can function independently as a redundant unit
with only the critical functions, itis possible to ensure that the
critical function implemented does not fail even when a fault
is identified by the CRC of the FLU robust mechanism, which
requires a full reset or at least a partial re-programming of the
EFPGA. What is proposed in the invention is implementing
the capability within the EFPGA to have two or more inde-
pendently operating sections, each with its own user clock
and reset, such that the redundancy can be implemented and
a change over from the full functionality to the critical func-
tionality section can be done on the fly, when a fault is iden-
tified on the full functionality EFPGA section. By providing
the capability for the arrayed EFPGA to split into multiple
sections that can operate independently the current invention
makes such applications feasible. The number of sections

10

15

20

25

30

35

40

45

55

60

65

10
itself is limited by the EFPGA block size and the intercon-
nection capability within the EFPGA to implement the
needed functionality.

The invention hence allow the EFPGA (FLU) to be recon-
figured into multiple FLLU sections each operating indepen-
dent of the other, each with its own user clock and reset
capability. The splits can be configured to provide FL.Us of
differing sizes as required. This allows the instantiation of
critical program elements in redundant blocks to prevent
complete shut down of critical functions of the EFPGA even
when an error is identified on a section of the EFPGA requir-
ing it to be taken out of the system and re configured.

The main objectives of the current invention is to allow
mapping of two or more applications into independent sec-
tions of a single EFPGA (FLU), that are isolated from each
other and can work independently, each with its own user
clock and reset. The sections can be defined using a config-
urable split column select, which allows the sections to have
flexible sizing as needed to implement the functionality.

FIG. 10 shows a single block EFPGA (FLU) 1001 imple-
mented. It comprises a set of vertical and horizontal arrays of
logic blocks 1002 with interconnect and programmability to
be configured. Each logic block 1002 contains programmable
logic and DFFs to perform user function. These user DFFs
have a user clock and reset associated. The FPGA may be
connected to a memory block 1003 by high speed links 1008
and an 10 block 1006 connected to the array by I/O connec-
tions 1009 as shown. The processor and other external con-
nections are using APB/AHB 1007 (Advanced Peripheral
Bus/Advanced High Performance Bus). An FPGA user clock
input 1004 and a FPGA user reset 1005 are also provided to
clock and reset the functional user DFF (in opposition of
configuration DFF/Latch) in the matrix.

FIG. 11 shows the splitting of the single FLU 1001 into
multiple FLU sections 1001-1 and 1001-2 each having a
predefined set of columns as decided by the configurable split
signal 1010. This split signal 1010 defines the column number
where the split happens by using the binary column address
and is configurable to allow the split at any column ofthe FLU
1001. The split creates two independently operating sections
of'the EFPGA (FLU) for implementing and providing redun-
dancy to critical functions during reconfiguration of an
EFPGA (FLU) 1001-1 and 1001-2 sections.

Since the two sections of the FLU 1001-1 and 1001-2 are
independently operating it is necessary to stop any horizontal
interconnections at the split boundary. This function is shown
in FIG. 12 is done using the split select signal 1010 and doing
an AND gate 1205 which enable horizontal connections 1204
between adjacent blocks within the FLU 1001. This circuit
hence prevents any horizontal connectivity between the hori-
zontal lines 11203 ofthe FLU 1001-1 to the FLU 1001-2 once
the split is enabled there by isolating the two FLU sections for
independent operation.

Another requirement for independent operation is separat-
ing the user clock and reset for each block and providing
independent inputs to each of the FLU sections 1001-1 and
1001-2 after the split. This is again handled as shown in FIG.
13. The split sell 1010 is generated from the 8 bit split column
defined by the register 1301 and the address col is generated
1303. An adder unit is used to subtract a value of ‘1” from the
address to generate a split mask 1304. The generated split
mask is used to drive the two sets of column based FLU user
clocks 1004-1 and 1004-2 for the two sections of the FPGA,
independently, from the input user clock. Similarly the split
mask is used to drive the two sets of column based user resets
1005-1 and 1005-2 for the two sections of the EFPGA from

US 9,252,778 B2

11

the userreset block. This helps to make the two sections of the
FLU (EFPGA) completely independent of each other.

As an example of the split mask application: ifa 5 column
EFPGA(FLU) is to be split in such a way as to have two
column and a 3 column sections, then the split select will be
22-00100 and the split mask will be 00100-1-00011 in binary.
This means that the columns 0 and 1 will use user clock 1 and
the columns 3, 4 and 5 will use user clock 2.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under-
standing the principles of the invention and the concepts
contributed by the inventor to furthering the art, and are to be
construed as being without limitation to such specifically
recited examples and conditions. Moreover, all statements
herein reciting principles, aspects, and embodiments of the
invention, as well as specific examples thereof, are intended
to encompass both structural and functional equivalents
thereof. Additionally, it is intended that such equivalents
include both currently known equivalents as well as equiva-
lents developed in the future, i.e., any elements developed that
perform the same function, regardless of structure. Specifi-
cally, in one embodiment the disclosed FLU/FPGA may be
implemented as a stand-alone integrated circuit (IC) contain-
ing one or more FLUs. In another embodiment the IC may
contain one or more FL.Us as well as other circuitry may it be
analog, digital or any combination thereto. Further the
EFPGA or the IC may contain split FL.Us each handling a
separate functionality or redundant functions for reliability
improvement.

Other applications and uses of the capabilities of the FLU
as implemented may be known or may become known to the
practitioners of the art and this invention as described is
intended to cover those as they become known.

What is claimed is:

1. A flexible logic unit comprising:

amatrix having a plurality of'tiles arranged in a plurality of
columns, each of the plurality oftiles having one or more
user D-type flip flops therein;

a first user clock generator;

a second user clock generator;

a split mask register that provides a plurality control lines
to identify which of the plurality of columns belong to a
first section and which of the plurality of columns
belong to a second section; and

a plurality of user clock selectors, each of the plurality of
user clock selectors coupled to the split mask register, to
the first user clock generator, to the second user clock
generator, and the plurality of user D-type flip flops in
one of the plurality of columns, each of the plurality of
user clock selectors selectively providing a user clock
signal from one of the first user clock generator or the
second user clock generator to the plurality of user
D-type flip flops in one of the plurality of columns
according to the split mask register.

2. The flexible logic unit of claim 1 wherein each of the
plurality of user clock selectors includes a multiplexer that
receives the first user clock generator and the second user
clock generator as multiplexer inputs and provides the user
clock signal as a multiplexer output.

3. The flexible logic unit of claim 1 further comprising:

a first user reset generator;

a second user reset generator;

a plurality of user reset selectors, each of the plurality of
user reset selectors coupled to the split mask register, to
the first user reset generator, to the second user reset
generator, and the plurality of user D-type flip flops in
one of the plurality of columns, each of the plurality of

25

30

35

40

45

55

60

12

reset selectors selectively providing a user reset signal
from one of the first user reset generator or the second
user reset generator to the plurality of user D-type flip
flops in one of the plurality of columns according to the
split mask register.

4. The flexible logic unit of claim 3 wherein each of the
plurality of user reset selectors includes a multiplexer that
receives the first user reset generator and the second user reset
generator as multiplexer inputs and provides the user reset
signal as a multiplexer output.

5. The flexible logic unit of claim 1 wherein the split mask
register receives column number signals that are a binary
representation of a column number at which the matrix is
split, the split mask register generating the plurality control
lines such that one of the plurality control lines is coupled to
a corresponding one of the plurality of user clock selectors
corresponding to one of the plurality of columns.

6. The flexible logic unit of claim 5 wherein the split mask
register generates the plurality control lines such that they are
a binary representation of two raised to the power of the
column number at which the matrix is split and then decre-
mented by one.

7. A flexible logic unit comprising:

a first clock and a second clock, the first clock and the

second clock being non-recovering clocks;

a matrix having a plurality of tiles arranged in columns and
rows, each tile having at least one latch bank therein,
each latch bank within any one column having an iden-
tical number of one or more latches therein, each tile
having configurable logic configurable responsive to
configuration data stored in the respective latch bank,
the latches in each latch bank being clocked in unison for
that latch bank, each of the latch banks being arranged to
accept configuration data from an immediately previous
latch bank in that column, such that one latch bank is
clocked by the first clock if an immediately previous
latch bank in the same column is clocked by the second
clock or by the second clock if an immediately previous
latch bank in the same column is clocked by the first
clock, each column of the matrix being configured to
accept configuration data in a first configuration data
flow direction within the column;

aplurality of lock flip-flops arranged in columns, each lock
flip-flop corresponding to a respective latch bank of a
respective column of the matrix, the plurality of lock
flip-flops configured to accept a lock bitin alock bit flow
direction that is opposite to the configuration data flow
direction, one lock flip-flop being clocked by the first
clock if an immediately previous lock flip-flop in the
same column is clocked by the second clock or by the
second clock if an immediately previous lock flip-flop in
the same column is clocked by the first clock;

a control interface to accept at least a configuration word
for each latch bank and associated lock flip-flop, the
interface configured to separate, for each column, con-
figuration data and lock bits data from the configuration
words;

aplurality of data busses, one for each column of the matrix
configured to receive data from each of the one or more
latches in each of the latch banks of each column;

a cyclic redundancy check control circuit providing a CRC
clock, a CRC check signal, and a plurality of row select
signals and a plurality of word select signals for selec-
tion of a particular latch bank in a particular row and
enabling the loading of configuration data stored therein
onto a corresponding data bus of the plurality of data
busses, the cyclic redundancy check control circuit con-

US 9,252,778 B2

13

figured to begin operating when the flexible logic unit
completes data configuration; and

a plurality of cyclic redundancy check circuits, each cor-

responding to one of the plurality of data busses, each
cyclic redundancy check circuit including an expected
value register that is loaded with an expected CRC value
for the corresponding data bus when the flexible logic
unit completes data configuration, a CRC computation
block that computes a computed CRC value based on the
configuration data input received on the data bus in each
CRC clock cycle, a CRC comparator that compares the
computed CRC value with the expected CRC value to
produce a CRC comparison result, and a register to hold
the CRC comparison result when the CRC check signal
indicates that the computed CRC value should match the
expected CRC value.

8. The flexible logic unit of claim 7, wherein the cyclic
redundancy check control circuit is further configured to con-
tinuously perform a cyclic redundancy check for as long as
the flexible logic does not reenter data configuration.

9. The flexible logic unit of claim 7, wherein the cyclic
redundancy check is performed on all columns of the matrix
in parallel.

10. The flexible logic unit of claim 7, wherein responsive to
an error indication on the at least an error signal the flexible
logic unit returns to a programming mode.

11. The flexible logic unit of claim 7, wherein the config-
urable logic comprises at least one field programmable gate
array coupled to the plurality of latch banks to be configured
by configuration data therein.

12. An integrated circuit comprising a plurality of elec-
tronic circuits where at least one of the electronic circuits is
the flexible logic unit of claim 7.

13. The flexible logic unit of claim 7, wherein the lock
flip-flops are reset to initialize the flexible logic unit.

14. The flexible logic unit of claim 7, wherein the cyclic
redundancy check data is associated with each column of the
matrix, and each cyclic redundancy check circuit includes a
storage capability for storage of the cyclic redundancy check
data for the respective column of the matrix.

15. The flexible logic unit of claim 7, wherein the cyclic
redundancy check data is associated with each configuration
word, and each cyclic redundancy check circuit is configured
to perform a cyclic redundancy check on each configuration
word for each respective column of the matrix.

16. The flexible logic unit of claim 7, further comprising a
plurality of CRC monitor circuits, each of the plurality of
CRC monitor circuits coupled to the CRC comparison result
and the CRC clock signal of one of the plurality of cyclic
redundancy check circuits, each of the plurality of CRC
monitor circuits comparing the CRC comparison in two suc-
cessive cycles of the CRC clock signal to generate a CRC
monitor output.

5

10

15

20

25

30

35

40

45

50

14

17. A flexible logic unit comprising:

a matrix having a plurality of latch banks arranged in a
plurality of columns, each latch bank within a particular
column having an identical number of one or more
latches therein that store configuration data;

a plurality of data busses, each of the plurality of data
busses coupled to one of the plurality of columns to
receive configuration data from the latch banks;

a cyclic redundancy check control circuit providing a plu-
rality of select signals that select a particular latch bank
in each of the plurality of columns and load configura-
tion data stored therein onto a corresponding data bus of
the plurality of data busses, a CRC clock signal that
indicates when configuration data is loaded onto the data
bus, and a CRC check signal that indicates that all of the
configuration data in each of the plurality of columns has
been loaded onto the plurality of data busses, the cyclic
redundancy check control circuit configured to begin
operating when the flexible logic unit completes data
configuration; and

a plurality of cyclic redundancy check circuits, each of the
plurality of cyclic redundancy check circuits coupled to
one of the plurality of data busses, the CRC clock signal,
and the CRC check signal, each of the plurality of cyclic
redundancy check circuits having an expected value reg-
ister that is loaded with an expected CRC value for the
corresponding column, each of the plurality of cyclic
redundancy check circuits computing a CRC value
based on the configuration data on the data bus, compar-
ing the CRC value to the expected CRC value to produce
a CRC comparison result, and holding the CRC com-
parison result when the CRC check signal is received;
and

a plurality of CRC monitor circuits, each of the plurality of
CRC monitor circuits coupled to the CRC comparison
result and the CRC clock signal of one of the plurality of
cyclic redundancy check circuits, each of the plurality of
CRC monitor circuits comparing the CRC comparison
in two successive cycles of the CRC clock signal to
generate a CRC monitor output.

18. The flexible logic unit of claim 17, wherein each of the
plurality of CRC monitor circuits includes a D flip-flop
coupled to the CRC clock signal and to the CRC comparison
result, the D flip-flop providing a copy of the CRC compari-
son result that is delayed into a succeeding cycle of the CRC
clock signal.

19. The flexible logic unit of claim 18, wherein each of the
plurality of CRC monitor circuits includes an exclusive-or
gate coupled to the CRC comparison result and to the copy of
the CRC comparison result, the exclusive-or gate providing
the CRC monitor output.

#* #* #* #* #*

